Delaware River Watershed Initiative

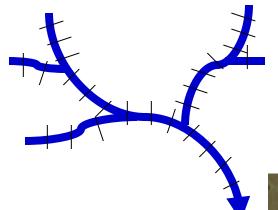
Open-Source Framework for Collaborative Watershed Analysis

Alex Waldman Jerry Mead

THE ACADEMY
OF NATURAL SCIENCES
of DREXEL UNIVERSITY

Roles of Models in Watershed Analysis

- Research dynamics affecting water conditions
- Predict (estimate) water conditions (in un-monitored locations in space or time)
- Inform policy/investment decisions w.r.t. restoration, conservation, TMDLs, etc.
 - AND Monitoring Strategy!

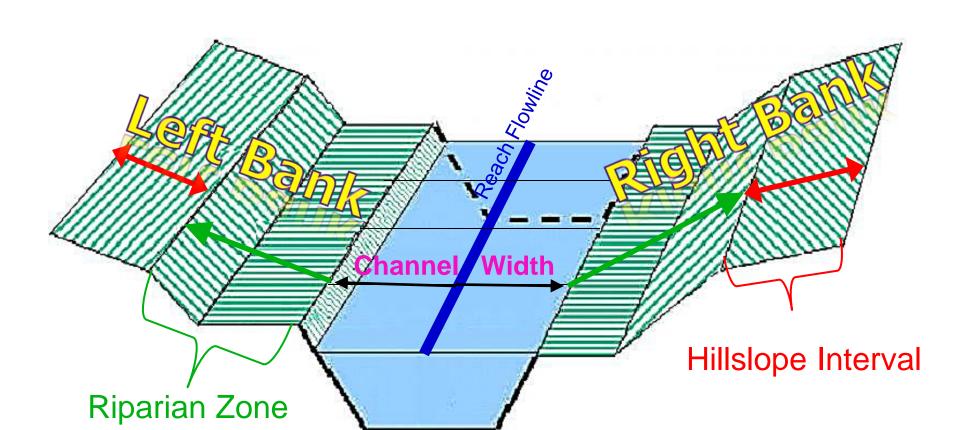

Coordinated Adaptive Watershed Analysis

- Integrated Research
- Standardized Data
- Automated Analysis
- Open-source collaborative development
 - i.e. standardized component models
- Dynamic user-feedback

A Problem with Scale

- Low-rez Basin-wide vs. high-rez site/micro-shed analysis
- Computational limitations
- Data resolution / uncertainty
- Know-how

The StreamHiker Approach

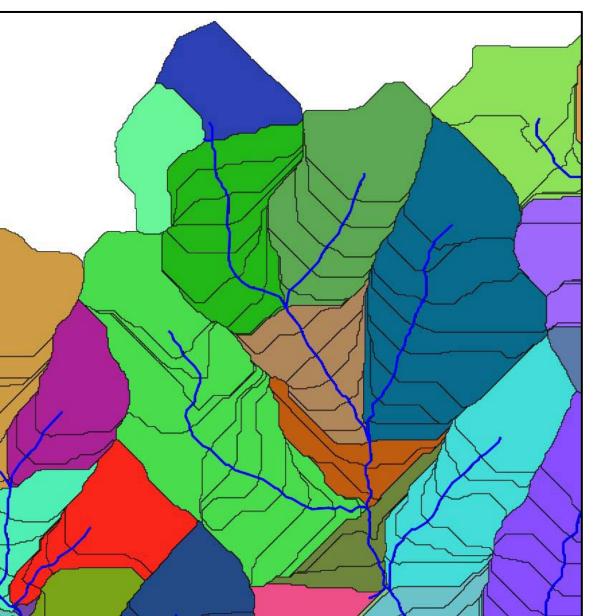


Split into 200 m long reaches

Lateral Drainage Areas Delineated

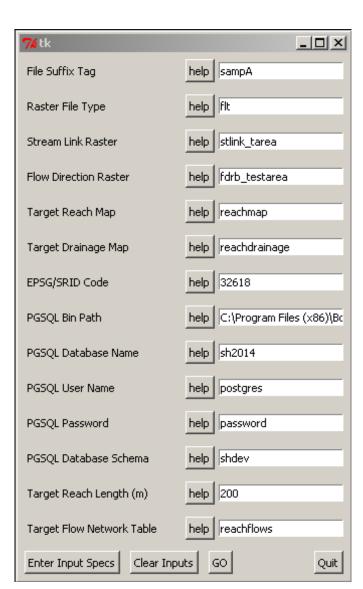
Hillslope Spatial Components

Network Tables


1 2 3	reachid integer 1 2 3	reachto integer	numff integer	orows 🔻	<i>EE</i> 2	Lucian				
2	integer 1 2	integer		ff1	660	The second				
2	2	2		integer	ff2 integer	ff3 integer	upjun_rid integer	aggseq_rid integer	upjun_dist_km double precision	reach_length_m double precision
3			0	0	0	0	1	1	0.135486660752	135.48666075236
	2	3	2	6	1	0	2	3	0.209231638378	209.23163837785
4	19	4	1	2	0	0	2	4	0.416895623238	207.66398486016
	4	5	1	3	0	0	2	5	0.625208951446	208.31332820829
5	5	11	1	4	0	0	2	6	0.733934092693	108.72514124648
5	6	2	0	0	0	0	6	2	0.102723493997	102.72349399718
7	7	11	0	0	0	0	7	7	0.175819128275	175.81912827454
В	8	9	0	0	0	0	8	10	0.200094684093	200.09468409318
9	9	10	1	8	0	0	8	11	0.402406365052	202.31168095899
.0	10	17	1	9	0	0	8	12	0.590228787825	187.82242277314
1	11	12	2	7	5	0	11	8	0.204528677825	204.52867782480
2	12	15	1	11	0	0	11	9	0.32017377649	115.64509866534
3	13	14	0	0	0	0	13	13	0.207014641512	207.01464151204
4	14	15	1	13	0	0	13	14	0.313522785893	106.50814438067
5	15	16	2	14	12	0	15	15	0.200744027441	200.74402744130
6	16	17	1	15	0	0	15	16	0.276056658584	75.312631143169
7	17	18	2	16	10	0	17	17	0.20858229503	208.58229502972
8	18	19	1	17	0	0	17	18	0.417164590059	208.58229502972
9	19	20	1	18	0	0	17	19	0.617259274153	200.09468409318
0	20	21	1	19	0	0	17	20	0.822706262147	205.44698799436
1	21	22	1	20	0	0	17	21	1.02815325014	205.44698799436
2	22	26	1	21	0	0	17	22	1.18191381946	153.76056932170
3	23	24	0	0	0	0	23	23	0.20766398486	207.66398486016
4	24	25	1	23	0	0	23	24	0.409975665819	202.31168095899
5	25	26	1	24	0	0	23	25	0.553680970687	143.70530486747

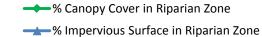
Spatial Datasets Overlaid & Aggregated at Various Scales

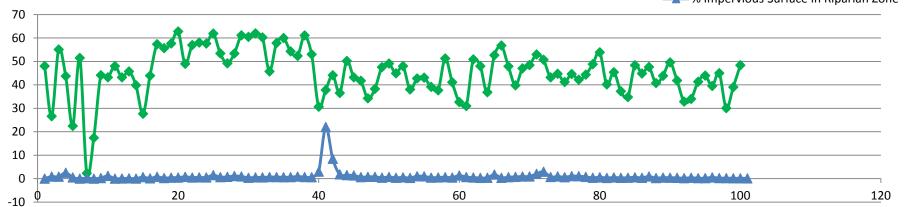
- Types of data:
 - Anything with a spatial reference
 - Environmental conditions:
 - Topography
 - Landcover
 - Soils
 - Geology
 - Climate
 - Point sources
 - Monitoring data
 - Model outputs

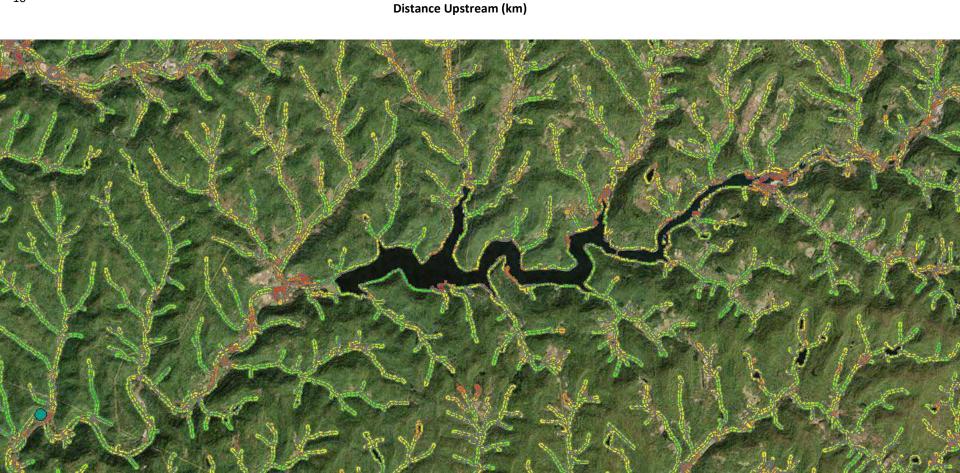

- Aggregation scales:
 - Drainage area
 - Upstream drainage area
 - Reach lateral drainage area
 - Confluence lateral drainage area
 - Upstream distance interval lateral drainage area
 - Riparian Zone
 - Hillslope Intervals
 - Left/Right Bank

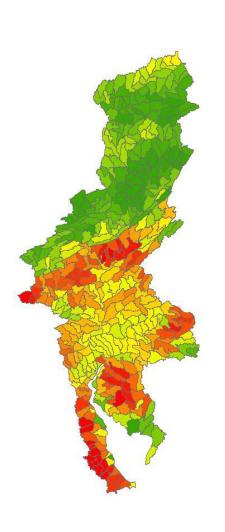
~ 200m Reach Lateral Drainage Areas arranged by Upstream Junction

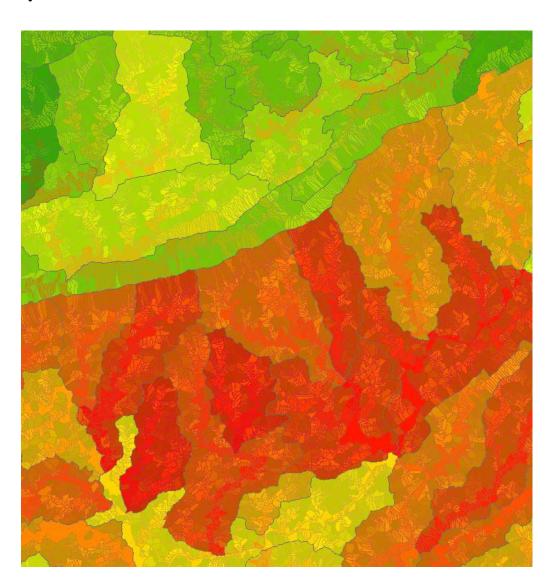
- Relatable to confluence-scale data / models, i.e.
 - EPA SPARROW
 - NHD Plus, etc.


Open-source: Hosted on GitHub




Canopy Cover within Riparian Zone





Nutrient Load Estimates (MapShed) at HUC-12 Scale ~Extrapolated to Reach Scale

Next Steps

- Continue packaging StreamHiker tools as stand-alone package hosted on GitHub
- Incorporate into ANSDU data management system (develop interactive mapping and data access tools)
- Statistical models
 - i.e. Stream temperature
 - Decay functions w.r.t. upstream distance
 - Cascading downstream models (i.e. SPARROW)
- Facilitate usage/get feedback from project partners

Delaware River Watershed Initiative

Alex Waldman amw47@drexel.edu

<u>GitHub page</u>: http://ansdu-patrick-center.github.io/

THE ACADEMY
OF NATURAL SCIENCES
of DREXEL UNIVERSITY

