DELAWARE VALLEY EARLY WARNING SYSTEM

LTRANS Application for Spill Trajectory Forecasting

Paula Kulis, CDM Smith
Elizabeth North, University of Maryland
Kelly Anderson, Philadelphia Water Department
January 28, 2015

DELAWARE VALLEY EARLY WARNING SYSTEM

Overview

115 intakes in coverage area

EWS Water Quality Event History

256 Events Reported

JANUARY 2005 – JANUARY 2014

Major System Communications Elements

Spill Routing

- Tributary to Delaware
 River and Delaware River
 Upstream of Trenton:
 Routing model (USGS
 stream gages)
- Delaware RiverDownstream of Trenton:Tidal Transport Model
 - DBOFS currents
 - LTRANS particle trajectories

TIDAL MODEL STRUCTURE

Delaware Bay Operational Forecast System

LTRANS

EWS Tidal Model Features

- Automated
- On demand
- Preprocessing ahead of time
- Graphic output
 - Results communicated for non-engineer/non-scientist use
- Updates automatically

DBOFS

Time (EDT)

- 3D ROMS model
- 48-hour forecasts, updated every 6 hrs
- Model forecasts on OPeNDAP Server
- Includes Delaware River to Trenton (not tributaries)

Why Use LTRANS?

- Lagrangian Model
 - Computational efficiency
- Meets compatibility needs with ROMS
- Particles can be treated as neutrally buoyant
 - Unknown contaminant

Other LTRANS Applications

Oyster Larvae in Chesapeake Bay

http://northweb.hpl.umces.edu/publications/Reports/Northetal_DNR_final_report_31July06.pdf

Deep Water Horizon Oil Spill

http://www.agu.org/meetings/fm10/fm10-sessions/fm10 OS42A.html

North, E. W., E. E. Adams, S. Schlag, C. R. Sherwood, R. He, S. Socolofsky. 2011. Simulating oil droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach. AGU Book Series: Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record Breaking Enterprise.

Polygon Approach

□ 184 Polygons

Impacts:

- Initial particle locations
- Results reporting to EWS users

LTRANS Spill representation

Water Department

Model Results and Map Representation

Tidal Model Workflow

Automated Model Configuration

Particle Track Updating

Sources of Uncertainty

- Spill Parameters
 - Location
 - Time
 - Contaminant (characteristics)
 - Quantity
- Upstream boundary conditions
- DBOFS resolution
- LTRANS Settings

Background variability: create 2 "buffer" polygons up and down stream at all times

Next Steps

- Diffusivity test vertically variable diffusivity
- Evaluate number of particles
- Validation
 - Eulerian-Lagrangian Model comparison
 - Dye study

