Exploring Localized Mixing Dynamics During Wet Weather in a Tidal Fresh Water System

Ramona McCullough & Phil Duzinski
Delaware Estuary Science & Environmental Summit

January 27, 2015

Background and objectives

- City of Philadelphia regulated on discharges to tidal Delaware and Schuylkill Rivers
- Mission to model water quality in receiving waters to meet regulatory requirements
- Use 3-D model and dye study to characterize the hydrodynamics of tidal Delaware River and impact of stormwater and combined sewer (CSO) discharges

Delaware Estuary

- Estuary length = 215 km
- Model domain
 - River km 99 215
- Chesapeake & Delaware
 Canal: km 94
- Turbidity max: km 50 120
- Salt intrusion mean: km 97
- Philadelphia: km 147 180
 - 4,800 km of sewer pipe
 - 455 stormwater outfalls
 - 164 CSO outfalls
 - 1 drinking water intake

Delaware River Basin Commission

1997 CSO Mixing Zone Study

- Characterize
 CSO discharge
 plume
- Targeted wet weather event (1.1" rainfall)
- Dye injected in sewer line
- $C_0 = 236 \text{ ppb}$
- Modeled Q₀

Meteorological Conditions

Tidal Delaware & Schuylkill River Model Domain

WL- Marcus Hook

V - Buoy C (PWD)

Turbidity Maximum Zone

Upstream limit of

WL- Delaware City

 Environmental Fluid Dynamics Code (EFDC) for hydrodynamics and water quality

Delaware City to Trenton

CSO, WWTP, direct runoff and freshwater tributaries

WL-Burlington Philadelphia V - db0301 (NOAA) WL- Philadelphia V - Buoy B (PWD) **Dye Injection Point NOAA Water Level (WL) Stations Velocity (V) Stations**

V - Buoy A (PWD

WL- Newbold

WASP models of non-tidal Tacony and Cobbs
Creeks

Model Validation

- Validation periods of 1984 & 2012
- NOAA water levels
- Currents
 - 1984-85 NOS Circulation Survey (tidal only & hindcast)
 - PWD ADCP data 2012 to present (hindcast)
- Bottom friction adjustments guided by detailed University of Delaware sediment morphology study (Sommerfield & Madsen, 2003)

2012 water level & velocity results

								1
	Total Model		M2 Amplitude			M2 Phase		
Station	RMSE	Skill	Obs	Mod	Error	Obs	Model	Error
	[m]	[-]	[m]	[m]	[m]	[hr]	[hr]	[hr]
WL-Marcus Hook	0.038	0.999	0.776	0.754	-0.022	0.042	0.128	0.087
WL-Philadelphia	0.049	0.999	0.824	0.838	0.015	1.384	1.333	-0.051
WL-Burlington	0.073	0.998	1.002	1.003	0.001	2.404	2.333	-0.071
WL-Newbold	0.085	0.997	1.084	1.067	-0.016	2.555	2.482	-0.074
	[m/s]	[-]	[m/s]	[m/s]	[m/s]	[hr]	[hr]	[hr]
Vmj-Philadelphia	0.091	0.993	0.775	0.707	-0.068	11.713	11.522	-0.191
Vmj-Buoy A	0.121	0.978	0.579	0.435	-0.144	11.874	11.806	-0.069
Vmj-Buoy B	0.073	0.994	0.624	0.575	-0.049	11.102	11.116	0.014

Dye results

Scenarios

- 1. Observed water level (domain wind field on)
- 2. Observed water level (wind field off)
- 3. Predicted water level (wind field off)

Analyzed:

- Day 2: low slack tide dye contour
- Day 3: impact of local set-down event on dye transport

Meteorological Conditions

Dye Contour Day 2 (rotated 90° cw)

Dye result "Map 3"

Dye Scenario 1

Scenarios 1 and 3: Wind vs. tidal only

at injection point (P4)

Scenarios 1 and 2: Wind vs. no local Wind

- Strong across channel oriented wind at profile location 1a
 - moves plume slightly to the south

Summary

- Modeled CSO discharge along with observed dye concentration resulted in good agreement with 1997 survey
- Down-bay wind results in set down in estuary
 - Model matches rapid advection of dye plume out of study area
- Local wind had negligible impact on water level as seen in subtidal plot
 - As expected in narrow, meandering riverine section
 - Minor impact of wind within the model domain only seen in one transect

Further hydrodynamic studies

- New dye study in Summer of 2014
 - Higher resolution data
 - 24 hour coverage over3 days

Future PWD work

- Validation of EFDC water quality model for bacteria and dissolved oxygen
 - Predicting dissolved oxygen levels, including impacts from carbon, nutrients, sediments and algae
 - Predicting bacteria levels across a wide range of dry and wet weather conditions
- Use new dye study to investigate apparent tidally induced trapping from corrugated shoreline

Future model use

- Impacts of sea level rise and changing weather patterns on localized flooding and salt line intrusion
- Influences of a dynamic river on future capital infrastructure planning requirements

Acknowledgements

- Woods Hole Group * Academy of Natural Sciences of Drexel University * Chesapeake Biogeochemical Associates
 * University of Delaware * Rutgers University
- NOAA/NOS
- USEPA Region 3
- Delaware River Basin Commission (DRBC)
- USACE
- CDM Smith
- Tetra Tech

Thank you! Questions?

Contact info:

Phil.Duzinski@phila.gov

Ramona.McCullough@phila.gov

Scenarios 1 and 3: Wind vs. tidal only

upstream of injection point (P5)

Scenarios 1 and 3: Wind vs. tidal only

downstream of injection point (P3d)

